
Вопрос задан 17.05.2020 в 16:59.
Предмет Геометрия.
Спрашивает Кузьмина Наталья.
!!!СРОЧНО ПОМОГИТЕ!!! (Если можете, сделайте рисунок) Даны два равных треугольника АВС и А1В1С1, у
которых угол А= углу А1, а углу В и В1 тупые. Докажите, что расстояния от вершин А и А1 соответсвенно до прямых ВС и В1С1 равны.

Ответы на вопрос

Отвечает Кузнецов Никита.
Так как по условию треугольники равны, то равны все их сходственные элементы. ⇒
∠С=∠С1, АС=А1С1.
Расстояние от точки до прямой - длина отрезка, проведенного перпендикулярно к ней, Для данных треугольников эти расстояния – высоты АН и А1Н1 треугольников соответственно.
∠В и ∠В1 тупые, поэтому АН и АН1 пересекут прямые СВ и СВ1 вне треугольников.
Рассмотрим ∆ АНС и Δ А1Н1С1. Они прямоугольные, гипотенузы АС=А1С1, ∠С=∠С1. Треугольники равны по гипотенузе и острому углу. Следовательно, АН=А1Н1.
Т.е.расстояния от вершин А и А1 соответсвенно до прямых ВС и В1С1 равны, что и требовалось доказать.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili