Вопрос задан 14.05.2020 в 08:46. Предмет Геометрия. Спрашивает Федосеенко Никита.

Высота AH треугольника ABC пересекает его среднюю линию KT в такой точке М, что КМ : МТ= 2 : 5.

Найдите длину стороны ВС этого треугольника, если отрезок BH на 9 см короче отрезка HC
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Колосов Александр.
Обозначим KM и MT как 2x и 5x соответственно ,тогда AC=2KT=14x (по свойству средней линии треугольника).
Пусть BH=y, тогда HC=y+9;
BT=(BH+HC)/2=(2y+9)/2 (KT-средняя линия), HT=BT-BH=(2y+9)/2-y=4,5(см).
Так как KT - средняя линия треугольника ABC, то MT ║ AC, то есть ∆MHT~∆AHC
 (это можно обосновать равенством соответственных углов при параллельных прямых), коэфф.подобия k=MT/AC=5x/14x=5/14 =>
HT/HC=5/14  <=>  4,5/(y+9)=5/14. Решая это уравнение, получим,что y=BH=3,6 (см),
HC=y+9=12,6 (см), BC=BH+HC=3,6+12,6=16,2(см).
Ответ: 16,2.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос