Вопрос задан 12.05.2020 в 00:44. Предмет Геометрия. Спрашивает Мирная Даша.

Даны равносторонние треугольники ABC и A1B1C1. O и O1 - соответственно точки пересечения медиан

этих треугольников, OA=O1A1. Докажите, что треугольники ABC=A1B1C1.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куцулима Богдан.

пусть АН высота (медиана, биссектриса)

тогда АО=2/3АН (медианы пунктом пересечения делятся в соотношении 2/1 от вершины)

аналогично А1О1=2/3А1Н1 => AH=A1H1

СН=1/2АС (напротив угла в 30 градусов лежит катет равный половине гипотенузы)

пусть АС равно х, СН равно х/2

по теореме Пифогора из треугольника АСН 3х^2/2=AH^2 => x=AH* (корень из 6)/2

С1Н1=1/2А1С1 (напротив угла в 30 градусов лежит катет равный половине гипотенузы)

пусть А1С1 равно у, С1Н1 равно у/2

по теореме Пифогора из треугольника А1С1Н1 3у^2/2=A1H1^2 => у=A1H1* (корень из 6)/2

получаем х=у

по трем сторонам треугольники равны

 

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос