
Вопрос задан 12.05.2020 в 00:44.
Предмет Геометрия.
Спрашивает Мирная Даша.
Даны равносторонние треугольники ABC и A1B1C1. O и O1 - соответственно точки пересечения медиан
этих треугольников, OA=O1A1. Докажите, что треугольники ABC=A1B1C1.

Ответы на вопрос

Отвечает Куцулима Богдан.
пусть АН высота (медиана, биссектриса)
тогда АО=2/3АН (медианы пунктом пересечения делятся в соотношении 2/1 от вершины)
аналогично А1О1=2/3А1Н1 => AH=A1H1
СН=1/2АС (напротив угла в 30 градусов лежит катет равный половине гипотенузы)
пусть АС равно х, СН равно х/2
по теореме Пифогора из треугольника АСН 3х^2/2=AH^2 => x=AH* (корень из 6)/2
С1Н1=1/2А1С1 (напротив угла в 30 градусов лежит катет равный половине гипотенузы)
пусть А1С1 равно у, С1Н1 равно у/2
по теореме Пифогора из треугольника А1С1Н1 3у^2/2=A1H1^2 => у=A1H1* (корень из 6)/2
получаем х=у
по трем сторонам треугольники равны


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili