Вопрос задан 04.05.2020 в 01:13. Предмет Геометрия. Спрашивает Прозоров Даниил.

Биссектриса угла прямоугольника делит его диагональ в отношении 2:7. Найдите площадь

прямоугольника, если его периметр равен 108 см. Помогите))
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кожагалиева Аида.
Прямоугольник АВСД: АВ=СД, ВС=АД
Периметр Равсд=108
2(АВ+ВС)=108
АВ+ВС=54
АВ=54-ВС
Биссектриса ВК пересекает диагональ АС в точке К и делит ее в отношении АК/КС=2/7.
Исходя из свойства биссектрисы (она делит третью сторону на отрезки, пропорциональные двум другим сторонам), АВ/ВС=АК/КС.
Подставляем:
(54-ВС)/ВС=2/7
7(54-ВС)=2ВС
ВС=378/9=42
АВ=54-42=12
Площадь Sавсд=АВ*ВС=12*42=504

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос