
Вопрос задан 20.04.2020 в 14:23.
Предмет Геометрия.
Спрашивает Игнатенко Наталья.
с помощью векторов докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, есть
среднее пропорциональное между двумя отрезками, на которые он делит гипотенузу.

Ответы на вопрос

Отвечает Коростылёв Иван.
Пусть основание высоты (на гипотенузе) - это точка О. С - вершина прямого угла. Тогда высота - это вектор h = ОС, отрезки гипотенузы k = OA; p = BО;
(*****первая точка означает начало вектора, вторая - конец, к примеру, ОА = - АО)
и стороны треугольника можно записать так
CB = p + h;
CA = k - h;
BA = k + p;
Поскольку АВС прямоугольный треугольник, то
(k + p)^2 = (k - h)^2 + (p + h)^2;
Раскрываем скобки.
k^2 + 2kp + p^2 = k^2 - 2kh + h^2 + p^2 + 2ph + h^2;
Вектор h перпендикулярен векторам k и p, => скалярные произведения kh и ph равны 0.
Скалярное произведение kp = kp (то есть произведение длин отрезков гипотенузы), поскольку эти векторы коллинеарны.
Поэтому
kp = h^2; чтд.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili