
Вопрос задан 31.05.2018 в 05:42.
Предмет Геометрия.
Спрашивает Великий Миша.
Помогите пожалуйста решить :)Высоты остроугольного треугольника АВСD, проведённые из точек В и С,
продолжили до пересечения с описанной окружностью в точках В₁ и С₁. Оказалось, что отрезок В₁С₁ проходит через центр описанной окружности. Найдите угол ВАС.Можно пожалуйста чертёж и подробное решение :)

Ответы на вопрос

Отвечает Цветкова Анастасия.
Обозначим точку пересечения высот треугольника - М,
основание высоты из С на АВ Н, из В на АС - К.
Рассмотрим треугольники ВМН и СМК.
Они прямоугольные по построению и имеют равные острые углы ( вертикальные при М- точке пересечения высот).
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
Следовательно, вписанные ∠ С1СА=∠В1ВА и дуги, на которые они опираются, также равны.
⇒ дуга С1АВ1, равная 180°, делится точкой А на две равные дуги по 90°.
Вписанный угол АСС1 опирается на дугу 90°и равен половине ее градусной меры.
∠АСС1=45°
Треугольник СНА - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
Угол НАС=90°- 45°=45°
Ответ: угол ВАС=45°
[email protected]



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili