Вопрос задан 31.05.2018 в 00:35. Предмет Геометрия. Спрашивает Волина Катя.

Во сколько раз уменьшится площадь поверхности правильной треугольной пирамиды, если все ее ребра

уменьшить в 6 раз?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Грошев Максим.

Может быть, можно решить проще, но попробуем через формулу Герона:S = v(p(p-a)(p-b)(p-c)), где S - площадь треугольника, p - его полупериметр,  v - корень, a,b,c - стороны треугольника. При уменьшении сторон в шесть раз полупериметр тоже уменьшится в шесть раз:S1 = v(p/6*(p-a)/6*(p-b)/6*(p-c)/6)=S/36. То есть площадь треугольника уменьшится в 36 раз. Площадь поверхности пирамиды равна сумме четырёх площадей треугольников и соответственно тоже уменьшится в 36 раз

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос