 
Вопрос задан 21.02.2020 в 01:59.
Предмет Геометрия.
Спрашивает Мордухаев Боря.
Доказать, что NK || AC, MN || BC
 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Гинаятов Акылбек.
                
    Ответ:
∠MKN = ∠CAB по условию,
эти углы - внутренние накрест лежащие при пересечении прямых NK и АС секущей ВМ, значит
NK ║ AC по признаку параллельности прямых.
По условию
МК = АВ, NK = АС, ∠NKM = ∠CAB, значит
ΔNKM = ΔCAB по двум сторонам и углу между ними.
Из равенства треугольников следует, что
∠NMK = ∠СВА,
эти углы - внутренние накрест лежащие при пересечении прямых MN и ВС секущей ВМ, значит
MN ║ ВС по признаку параллельности прямых.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			