Вопрос задан 28.01.2020 в 03:03. Предмет Геометрия. Спрашивает Бурков Кирилл.

Катеты прямоугольного треугольника равны 20 √41 и 25 √41 . Найдите высоту, проведённую к гипотенузе.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Берикказинов Арнұр.
Катеты прямоугольного треугольника равны 20 √41 и 25√41, то по теореме Пифагора гипотенуза = √(20 √41)² + (25√41)²=√16400+25625=√42025=205
Площади треугольника равна:
S = (20 √41 * 25√41) / 2 (половине произведения катетов).
Площади треугольника равна:
S = (205 * х) / 2 = (половина произведения стороны на высоту, проведенную к ней) 
где х - высота, проведенная к гипотенузе.

Составим равенство и найдем значение х:
(20 √41 * 25√41) / 2 = (205 * х) / 2 
(20 √41 * 25√41)  = (205 * х)  (умножили на 2) 
√400*41*√625*41=205х
√16400*√25625=205х
√420250000=205х
20500=205х
x=20500:205
x=100
Ответ: Высота равна 100.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос