Вопрос задан 29.05.2018 в 04:09. Предмет Геометрия. Спрашивает Фондарок Анастасия.

Помогите пожалуйста решить:1. Вершини трикутника ABC ділять коло у відношенні 1:3:5. Знайдіть кути

цього трикутника. 2. За рисунком знайдіть кут х (О — центр кола), α = 19°, β = 47°.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куртеева Ксения.

1) Вершини трикутника ABC ділять коло у відношенні 1:3:5.
=>
Треугольник вписанный => углы вписанные и равны половине дуги, на которую опираются. Найдем дуги, зная, что вся окружность 360°.
Из отношения:
Пусть х° одна часть дуги, тогда 3х° - вторая, 5х° -третья
х+3х+5х=360
9х=360
х=360:9
х=40
40° меньшая дуга =>
3*40°=120° вторая дуга
5*40°=200° третья дуга.
Тогда углы равны
½*40°=20°
½*120°=60°
½*200°=100°
Ответ: 20°, 60° и 100°

2) О-центр окружности=> углы лежат выше диаметра и в сумме составляют половину окружности, т.е. 180°
углы α , β и х - вписанные и равны половине дуги, на которую опираются.=>
α = 19° опирается на дугу
19°•2=38°,
β = 47° опирается на дугу 47°•2=94°
Тогда х опирается на дугу 180°-94°-38°=48°
Следовательно х=½*48°=24°
Ответ: х=24°

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос