
Вопрос задан 29.05.2018 в 04:09.
Предмет Геометрия.
Спрашивает Фондарок Анастасия.
Помогите пожалуйста решить:1. Вершини трикутника ABC ділять коло у відношенні 1:3:5. Знайдіть кути
цього трикутника. 2. За рисунком знайдіть кут х (О — центр кола), α = 19°, β = 47°.


Ответы на вопрос

Отвечает Куртеева Ксения.
1) Вершини трикутника ABC ділять коло у відношенні 1:3:5.
=>
Треугольник вписанный => углы вписанные и равны половине дуги, на которую опираются. Найдем дуги, зная, что вся окружность 360°.
Из отношения:
Пусть х° одна часть дуги, тогда 3х° - вторая, 5х° -третья
х+3х+5х=360
9х=360
х=360:9
х=40
40° меньшая дуга =>
3*40°=120° вторая дуга
5*40°=200° третья дуга.
Тогда углы равны
½*40°=20°
½*120°=60°
½*200°=100°
Ответ: 20°, 60° и 100°
2) О-центр окружности=> углы лежат выше диаметра и в сумме составляют половину окружности, т.е. 180°
углы α , β и х - вписанные и равны половине дуги, на которую опираются.=>
α = 19° опирается на дугу
19°•2=38°,
β = 47° опирается на дугу 47°•2=94°
Тогда х опирается на дугу 180°-94°-38°=48°
Следовательно х=½*48°=24°
Ответ: х=24°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili