Вопрос задан 03.01.2020 в 05:35.
Предмет Геометрия.
Спрашивает Братенкова Мария.
Через середину радиуса шара перпендикулярно ему проведена плоскость. Какую часть площади большого
круга составляет площадь полученного сеченияОтветы на вопрос
Отвечает Кириллов Георгий.
Вычислим радиус круга сечения.Для этого рассмотрим треугольник у которого две вершины лежат на диаметре,а третья вершина лежит в точке пересечения сечения с шаром. Угол, лежащий против диаметра шара, равен 90*.Опустим высоту на диаметр. Один отрезок диаметра равен 3/2R, а другой отрезок равен 1/2R. Высота , опущенная на диаметр, является радиусом сечения, обозначим через r. r является средним геометрическим отрезков диаметра, которая является гипотенузой этого треугольника.
(3/2)R/r=r/(1/2)R, r²=R²·(3/2)·(1/2)=R²·3/4, Sсечения=πr²=πR²·3/4
Площадь большого круга равна Sб.круга=πR².
Sсечения/Sб.круга=(πR²·3/4)/πR²=3/4.
ответ: Площадь сечения составляет 3/4 площади большого круга
(3/2)R/r=r/(1/2)R, r²=R²·(3/2)·(1/2)=R²·3/4, Sсечения=πr²=πR²·3/4
Площадь большого круга равна Sб.круга=πR².
Sсечения/Sб.круга=(πR²·3/4)/πR²=3/4.
ответ: Площадь сечения составляет 3/4 площади большого круга
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
