Вопрос задан 01.07.2019 в 10:47. Предмет Геометрия. Спрашивает Кузьмина Екатерина.

Острый угол параллелограмм 60*, найдите площадь, если разница сторон 16 см, короткая диагональ 19см.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Обидина Анастасия.
Пусть одна  сторона параллелограмма х, вторая (16+х), острый угол между ними 60⁰.
Диагональ параллелограмма, длиной 19 см лежит против острого угла в 60.
Применяем теорему косинусов:
19²=х²+(16+х)²-2·х·(16-х)·cos60⁰,
361=x²+256+32x+x²-6x+x²,
3x²+26x-105=0
D=b²-4ac=26²+4·3·105=676+1260=1936=44²
x₁=(-26-44)/6<0   x₂=(-26+44)/2=9
Одна сторона параллелограмма 9см, вторая (16+9)=25 см.
Площадь параллелограмма равна произведению сторон на синус угла между ними:
S=9·16·sin60⁰=72√3 кв. см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос