Вопрос задан 28.06.2019 в 17:59. Предмет Геометрия. Спрашивает Куценко Анастасия.

В параллелограмме ABCD точка P-середина отрезка CD, M- середина стороны BC, отрезки BD и AM

пересекаются в точке O.Докажите, что OP<2/3AD+1/6AB
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Матвеева Катюша.

Треугольники ВОМ и AOD подобны по двум углам (<AOD=<BOM как вертикальные, а <OАD=<BMА как накрест лежащие при параллельных ВС и AD и секущей АМ). Коэффициент подобия равен k=BM/AD=1/2. Тогда ОМ=(1/3)*АМ, OD=(2/3)*AD.

Если речь идет о векторах, то мы видим, что вектор ОР=ОМ+МР, причем вектор ОМ=(1/3)*АМ = (1/3)(АВ+BM) = (1/3)(АВ+AD/2) =AB/3+AD/6. Вектор MP=MC+CP = AD/2-AB/2. Тогда

ОР = ОМ+МР = AB/3+AD/6+AD/2-AB/2 = (2/3)*AD - (1/6)*AB.

Или так: вектор ОР=ОD+DР, причем вектор ОD=(2/3)*BD.

Вектор BD=AD-AB. Тогда вектор OD=(2/3)*AD-(2/3)*AB.

ОР = ОD+DР = (2/3)*AD-(2/3)*AB+AB/2 = (2/3)*AD - (1/6)*AB.

Следовательно

ОР < (2/3)*AD + (1/6)*AB, что и требовалось доказать.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос