Вопрос задан 25.06.2019 в 12:41. Предмет Геометрия. Спрашивает Абдуллаев Даниил.

Окружность, вписанная в равнобедренную трапецию ABCD, касается боковых сторон АВ и CD в точках M и

N соответственно. Отрезок AN пересекает окружность в точке K, а луч MK пересекает основание AD в точке L. а) Докажите, что треугольники AKL и МAL подобны. б) Найдите отношение AL:LD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Берко Остап.
A) Из симметрии всей этой "конструкции" MN II AD; поэтому ∠KAL = ∠MNK; но ∠MNK = ∠AMK; (поскольку эти углы "измеряются" половиной дуги MK);
то есть у треугольников AKL и MAL ∠ALM общий, а ∠AML = ∠KAL; следовательно эти треугольники подобны по двум углам.
б) Из той же симметрии следует ∠KAL = ∠MDA; => ∠MDA = ∠AML; то есть получается, что есть еще один треугольник, подобный AKL и MAL - это треугольник AMD;
то есть AL/AM = AM/AD;
Если обозначить P - точка касания AD с окружностью, то AM = AP; и (опять таки - из симетрии :) ) AP = AD/2;
получилось AM = AD/2;
AL = AM^2/AD = AD/4; AL/AD = 1/4;
довольно странный результат - получается L - середина AP;
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос