Вопрос задан 01.04.2018 в 10:03. Предмет Геометрия. Спрашивает Быков Виктор.

СРОЧНО Задача. Меньшее основание ВС трапеции AВСD равно 12 см; AВ = CD, D = 45°, высота равна 8 см.

Вычислите: а) площадь трапеции; б) отношение площадей треугольников AOD и ВОС (О — точка пересечения диагоналей тра¬пеции).
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Janabaeva Nurai.

Решение Вашего задания во вложении


0 0
Отвечает Лукин Никита.

См. рис.
AВ = CD => AВСD - равнобедрая трапеция  =>  А = D = 45° = АВН = РСD  =>
=> AD = 28 (см)
а) S=(AD+BC) / 2 * h = (28+12) /2 * 8 = 160 (кв. см)
б) ОАD = OCB, OBC = ODA (т.к. BC || AD) => треуг. АОD и BOC подобны =>
 => k = AD / BC = 28 / 12 = 7 / 3 = 2 + 1/3 (коэфф. подобия)
SAOD / SВОС = k*k = 49 / 9 = 5 + 4 / 9 (отношение площадей подобных треугольников равно квадрату коэфф. подобия)


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос