Вопрос задан 22.05.2018 в 10:25. Предмет Геометрия. Спрашивает Сосновицкая Злата.

В тупоугольном треугольнике наибольшая сторона имеет длину 3, а наименьшая 1. Может ли площадь

треугольника быть больше чем корень из 2. Срочно!!!! 60 баллов
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котик Ксения.

В треугольнике может быть только один тупой угол и против него лежит большая сторона, равная 3. По теореме о неравенстве треугольника большая сторона должна быть МЕНЬШЕ суммы двух других сторон.
Значит третья сторона треугольника  должна быть 2<X<3.
Пусть эта сторона равна 2,9. Тогда по формуле Герона:
S=√(p*(p-a)(p-b)(p-c) = √(3,45*2,45*0,45*0,1)=√0,38
При третьей стороне, меньшей 2,9 площадь треугольника будет еще меньше. 
Ответ: площадь треугольника не может быть больше √2.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос