
Вопрос задан 12.06.2019 в 08:02.
Предмет Геометрия.
Спрашивает Щукина Таня.
вычислите площадь боковой поверхности правильной треугольной пирамиды, если ее высота равна 9 см, а
апофема 18 см.

Ответы на вопрос

Отвечает Кузнецов Андрей.
SABC - прав.треуг. пирамида. SO - ее высота, SK- апофема. Отезок ОК - равен 1/3 ВК (ВК-высота равностороннего тр-ка АВС).
Из прям. тр-ка SOK: ОК = кор(SKкв - SOкв) = кор(324-81) = кор243 = 9кор3.
Тогда ВК = 27кор3. Теперь найдем сторону а тр. АВС из условия, что аsin60 = BK.
а = 2ВК/кор3 = 54. Тогда Sбок = 3*[(1/2)*AC*SK] = 3*27*18 = 1458 cм^2/
Ответ: 1458 см^2.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili