
Вопрос задан 11.06.2019 в 10:20.
Предмет Геометрия.
Спрашивает Борисова Катя.
В окружность вписан квадрат со стороной 8 см найдите сторону правильного окружности шестеугольника
описанного около этой окружности

Ответы на вопрос

Отвечает Затейников Алекс.
Вершины вписанного квадрата лежат на описанной около него окружности. Диагональ квадрата - диаметр этой окружности.
Диагональ вписанного квадрата со стороной 8 см по теореме Пифагора DC=√(DH²+CH²) или DC=СН:sin45°=8√2, ⇒ радиус ОН =D:2=4√2 см. (См. рисунок). Соединим вершины А и В шестиугольника с центром О вписанной в него окружности.
Центральный угол АОВ=360°:6=60°, треугольник АОВ - равносторонний. Радиус вписанной окружности является его высотой. сторона АВ=АО=ОН:sin60°=(4√2):√3/2=(8√2):√3 или см


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili