Вопрос задан 21.05.2018 в 05:48. Предмет Геометрия. Спрашивает Цейн Кристина.

Периметр прямоугольного треугольника равен 72 метра. Радиус вписанной в треугольник окружности 6

метров. Найти диаметр описанной около треугольник окружности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Митрюхина Мария.

Пусть имеем прямоугольный треугольник АВС с прямым углом С.
Обозначим отрезки сторон от вершин до точек касания с вписанной окружностью за х и у.
Стороны равны: АС = 6 + у,
                          ВС = 6 + х,
                          АВ = х + у.   (это гипотенуза).
Выразим периметр: 
6 + у + 6 + х + х + у = 72.
Или 2х + 2у = 72 - 12 = 60.
Сократим на 2: х+ у = 30.
В 
прямоугольном треугольнике гипотенуза является диаметром описанной окружности.
Ответ: Д = 30 м.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос