Вопрос задан 05.06.2019 в 01:39. Предмет Геометрия. Спрашивает Санников Алексей.

Катеты ВС и В1С1 прямоугольных треугольнику АВС и треугольнику А1В1С1 расположенных на одной

линии,параллельны.Найдите расстояние от точки А до катета В1С1,если известно, что угол АВС=углу С1ВС=30 градусов,АВ=42 см.1)21 см2)84 см.3)210 мм.4)42 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вахрушев Константин.

АВС - египетский треугольник (подобный тр-ку со сторонами 3,4,5), его стороны 15,20,25. Высота, проведенная к гипотенузе АВ - пусть это СН - вычисляется так

СН*25= 15*20 (это удвоенная площадь АВС, записанная 2 способами); СН = 12.

Плоскость DCH перпендикулярна АВ, поскольку АВ перпендикулярно DC и CH. Поэтому искомое расстояние находится из прямоугольного теругольника DCH с катетами 12 и 16. Это опять египетский треугольник, гипотенуза 20.

Ответ DH = 20.

 

Напомню - из за того, что 3^2 + 4^2 = 5^2; подобие такому треугольнику позволяет не заниматься вычислением длинных корней, а сразу записать результат. Впрочем, кому охота, запишите теорему Пифагора и сосчитайте - результат будет тот же.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос