Вопрос задан 28.05.2019 в 03:27. Предмет Геометрия. Спрашивает Мустафин Айвар.

Найти объем треугольной призмы abca1b1c1 зная четыре из шести ее вершин: А(1,2,3), В(3,3,5),

В1(3,4,3), С1(4,4,5).
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецов Никита.
Координаты вектора равны разности соответствующих координат точек его конца и начала АВ{х2-х1;y2-y1;z2-z1}.
В нашем случае вектора: АВ{2;1;2}, ВВ1{0;1;-2}, В1С1{1;0;2}.
Модуль или длина вектора: |a|=√(x²+y²+z²), значит
|AB|=√(2²+1²+2²)=3.
|BC|=√(1²+0²+2²)=√5. (так как ВС=В1С1 - ребра призмы).
Косинус угла между векторами cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+z2²)].
Угол между векторами АВ и ВС равен углу между векторами АВ и В1С1 (как угол между скрещивающимися прямыми), тогда :
cosα=(2*1+1*0+2*2)/[√(4+1+4)*√(1+0+4)]=6/(3√5)=2√5/5.
Тогда площадь основания равна (1/2)*АВ*ВС*Sinα.
Sinα=√(1-Cos²α)=√(1-4/5)=√5/5. Sabc=|AB|*|BC|*Sinα=3√5*√5/5=3ед².

Высота призмы - это расстояние от точки В1 до плоскости АВС.
Уравнение плоскости, проходящей через три заданные точки, записывается как:
|X-X1 X2-X1 X3-X1|
|y-Y1 Y2-Y1 Y3-Y1|=0.  Из условия имеем:  
|Z-Z1 Z2-Y1 Z3-Z1|

|X-1  2  3 |
|Y-2  1  1 |=0.  
|Z-3  2  4 |
Раскрываем определитель по формуле:
a1b2c3+a3b1c2+a2b3c1-a3b2c1-a1b3c2-a2b1c3=(X-1)*4+(Z-3)*2+(y-2)*6-(z-3)*3-(х-1)*2-(y-2)*8 = 4X-4+2Z-6+6Y-12-3Z+9-2X+2-8Y+16 = 2X-2Y-Z+5=0
Второй вариант (для проверки арифметики):
Раскрываем определитель по первому столбцу, находим уравнение плоскости:
         |1 1|            |2 3|            |2  3|
(х-1)*|2 4| - (y-2)*|2 4| +(z-3)*|1  1| =0.

(X-1)(4-2)-(Y-2)(8-6)+(Z-3)(2-3)=0.
2X-2-2Y+4-Z+3=0  или 2X-2Y-Z+5=0.
Оба варианта дали одинаковый вариант уравнения плоскости:
2X-2Y-Z+5=0.
Проверка для точки А: 2-4-3+5=0. Для точки В: 6-6-5+5=0. Для точки C: 8-6-7+5=0.
Итак, уравнение плоскости верное.
Найдем высоту призмы.
Расстояние d от точки M0(x0,y0,z0) до плоскости ax+by+cz+d=0 вычисляется по такой формуле: d=|ax0+by0+cz0+d|/√(a²+b²+c²).  В нашем случае:
d=|6-8-3+5|√(4+4+1)=0
Где же ошибка?
Проверим по данным нам точкам В1 и С1.
Эти точки, данные нам в условии, так же ПРИНАДЛЕЖАТ ЭТОЙ ПЛОСКОСТИ!
Проверка:  Для точки В1: 6-8-3+5=0. Для точки C1: 8-8-5+5=0.
Следовательно, все четыре заданных вершины ЛЕЖАТ в ОДНОЙ ПЛОСКОСТИ.
====================================================
Проверим еще раз: найдем уравнение плоскости АВС1:
|X-X1 X2-X1 X3-X1|
|y-Y1 Y2-Y1 Y3-Y1|=0.  Из условия имеем:  
|Z-Z1 Z2-Y1 Z3-Z1|

|X-1  2  3 |
|Y-2  1  2 |=0.  
|Z-3  2  2 |
Раскрываем определитель по формуле:
a1b2c3+a3b1c2+a2b3c1-a3b2c1-a1b3c2-a2b1c3=
=(X-1)*2+(Z-3)*4+(y-2)*6-(z-3)*3-(х-1)*4-(y-2)*4=
=2X-2+4Z-12+6Y-12-3Z+9-4X+4-4Y+8 = -2X+2Y+Z-5=0  или 2X-2Y-Z-5=0.
Итак, плоскость АВС и АВС1 СОВПАДАЕТ.
=======================================================
И еще раз:
Уравнение плоскости, проходящей через три заданные точки В(3,3,5), В1(3,4,3),
С1(4,4,5). записывается как:
|X-X1 X2-X1 X3-X1|
|y-Y1 Y2-Y1 Y3-Y1|=0.  Из условия имеем:  
|Z-Z1 Z2-Y1 Z3-Z1|

|X-3   0  1 |
|Y-3   1  1 |=0.  
|Z-5  -2  0 |
Раскрываем определитель по первому столбцу,
находим уравнение плоскости:
         | 1 1|            | 0 1|            |0  1|
(х-3)*|-2 0| - (y-3)*|-2 0| +(z-5)*|1  1| =0.

(X-3)2-(Y-3)2+(Z-5)(-1)=0.
2X-6-2Y+6-Z+5=0  или 2X-2Y-Z+5=0.
Итак, плоскости ВВ1С1 и АВС - одна и та же! Как и плоскость АВС1.
Данная нам фигура - НЕ ПРИЗМА!
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос