Вопрос задан 24.05.2019 в 16:28. Предмет Геометрия. Спрашивает Демченко Дина.

На рисунке AB - сторона правильного девятиугольника, точка О является его центром . Найдите площадь

треугольника АОВ и данного девятиугольника, если радиус окружности, описанный около девятиугольника, равен 12 см . Ответ округлите .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тлепкали Жанерке.
Если окружность описана вокруг многоугольника, на ней лежат все его вершины.
Расстояние от центра многоугольника до вершин, расположенных на окружности, равно её радиусу. 
⇒∆ АОВ- равнобедренный с боковыми сторонами, равными 12 см. АВ - его основание. Радиусы описанной окружности, соединяясь с вершинами девятиугольника, делят его на 9 равных треугольников. 
Угол при вершине О равен 1/9 градусной меры окружности,
т.е. ∠АОВ=360°:9-40°
 Площадь треугольника можно найти разными способами.
Для этого треугольника применим формулу S=a•a•sinα:2, где а=R - боковые стороны равнобедренного треугольника, α-центральный угол девятиугольника, образованный ими, и равный 40°. 
S(∆АОВ)=12²•0.64279:2≈ 46,28 см²
Правильный девятиугольник состоит из 9-ти таких треугольников. Его площадь S=46,28•9=416,52 см²

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос