Вопрос задан 24.05.2019 в 14:24. Предмет Геометрия. Спрашивает Мельников Вова.

В треугольнике АВС высота ВН, равная 6, и медиана СМ, равная 5, пересекаются в точке О. Расстояние

от точки О до стороны АС равно 1. Найдите сторону ВС.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лифанов Максим.
Пусть MD - высота треугольника AMC, тогда MD - средняя линия треугольника ABH (т.к. М - середина AB и MD||BH), т.е. MD=BH/2=3.
Треугольники HOC и DMC подобны с коэфф. подобия OH/MD=1/3. Значит, OC=СM/3=5/3. По т. Пифагора HC²=OC²-OH²=(5/3)²-1=16/9.
BC=√(HC²+BH²)=√(16/9+6²)=(2√85)/3.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос