Вопрос задан 09.05.2019 в 10:40. Предмет Геометрия. Спрашивает Попцов Владимир.

Основанием прямой призмы является равнобедренная трапеция с основаниями 4 и 14 см, диагональю 15

см. Две боковые грани призмы- квадраты. Найдите V и Sпов. Уже есть решение ,но я не могу составить рисунок, помогите пожалуйста.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Семеренко Александр.
...................................................
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Given Information

We are given that the base of the prism is an isosceles trapezoid with bases measuring 4 cm and 14 cm, and a diagonal measuring 15 cm. The two lateral faces of the prism are squares.

Solution

To find the volume (V) and surface area (S) of the prism, we can break down the problem into smaller steps.

Step 1: Finding the Height of the Prism

Let's denote the height of the prism as h. To find the height, we can use the Pythagorean theorem on the right triangle formed by the diagonal and the height of the trapezoid.

Using the Pythagorean theorem, we have: h^2 + (14 - 4)^2 = 15^2

Simplifying the equation, we get: h^2 + 10^2 = 15^2 h^2 + 100 = 225 h^2 = 125 h = √125 h = 11.18 cm

Therefore, the height of the prism is approximately 11.18 cm.

Step 2: Finding the Volume of the Prism

The volume (V) of a prism can be calculated by multiplying the area of the base by the height. Since the base of the prism is an isosceles trapezoid, we can calculate its area using the formula:

Area of trapezoid = (sum of bases) * (height) / 2

Substituting the given values, we have: Area of trapezoid = (4 + 14) * 11.18 / 2 Area of trapezoid = 18 * 11.18 / 2 Area of trapezoid = 100.62 cm^2

Now, we can calculate the volume of the prism: V = Area of trapezoid * height V = 100.62 cm^2 * 11.18 cm V ≈ 1124.40 cm^3

Therefore, the volume of the prism is approximately 1124.40 cm^3.

Step 3: Finding the Surface Area of the Prism

The surface area (S) of a prism can be calculated by adding the areas of all its faces. In this case, we have two square faces and four rectangular faces.

The area of each square face is given by the formula: Area of square = side^2

Substituting the given values, we have: Area of square = 4^2 Area of square = 16 cm^2

The area of each rectangular face is given by the formula: Area of rectangle = length * width

Substituting the given values, we have: Area of rectangle = 4 * 11.18 Area of rectangle = 44.72 cm^2

Now, we can calculate the surface area of the prism: S = 2 * (Area of square) + 4 * (Area of rectangle) S = 2 * 16 cm^2 + 4 * 44.72 cm^2 S = 32 cm^2 + 178.88 cm^2 S ≈ 210.88 cm^2

Therefore, the surface area of the prism is approximately 210.88 cm^2.

Conclusion

The volume of the prism is approximately 1124.40 cm^3, and the surface area of the prism is approximately 210.88 cm^2.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос