Вопрос задан 05.05.2019 в 03:23. Предмет Геометрия. Спрашивает Константинов Артём.

Плоскости пересекаются по прямой с через точку м лежащую на прямой с в данный плоскостях проведены

отрезки ам и вм перпендикулярные прямой с отрезки ам и аб равны найдите их длины если вм 4 дм а угол между плоскостями 60. пожалуйста!!!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Казакова Анастасия.
Получается треугольник АМВ. Чтобы лучше представить возьми учебник, это две плоскости. Приоткрой книгу и поставь между страницами ручку, чтобы книга не закрылась. Ручка это отрезок АВ. Точка М лежит на переплете. У тебя получается равнобедренный треугольник в котором один угол равен 60. Значит он равносторонний. Все стороны будут по 4дм
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that two planes intersect along a line that passes through point M. From point M, perpendicular segments AM and VM are drawn to the line. We are also given that VM is 4 dm and the angle between the planes is 60 degrees. We need to find the lengths of segments AM and AB.

Solution

To solve this problem, we can use the information given and apply some geometric principles.

Let's analyze the given information step by step:

1. We are given that VM is 4 dm. This means that the length of segment VM is 4 decimeters.

2. We are also given that the angle between the planes is 60 degrees. This angle is formed by the intersection of the two planes.

Now, let's use these pieces of information to find the lengths of segments AM and AB.

To find the length of segment AM, we need to consider the right triangle AMV, where VM is the hypotenuse and AM is one of the legs. We can use trigonometry to find the length of AM.

Using the trigonometric relationship for a right triangle:

cos(angle) = adjacent/hypotenuse

In this case, the adjacent side is AM and the hypotenuse is VM. The angle is 90 degrees because AM is perpendicular to the line.

Therefore, we have:

cos(90 degrees) = AM/VM

Since cos(90 degrees) is equal to 0, we can simplify the equation to:

0 = AM/VM

Solving for AM, we get:

AM = 0 * VM = 0

So, the length of segment AM is 0.

Next, let's find the length of segment AB. Since AB is a segment on the line, it is parallel to the intersection of the two planes. Therefore, AB is perpendicular to AM.

Since AM is perpendicular to AB, we can use the Pythagorean theorem to find the length of AB.

The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

In this case, AB is the hypotenuse, and AM and MB are the other two sides.

Therefore, we have:

AB^2 = AM^2 + MB^2

Substituting the values we know, we get:

AB^2 = 0^2 + MB^2

Simplifying, we have:

AB^2 = MB^2

Taking the square root of both sides, we get:

AB = MB

So, the length of segment AB is equal to the length of segment MB.

In conclusion, the lengths of segments AM and AB are both 0.

Answer

The lengths of segments AM and AB are both 0.

Please let me know if I can help you with anything else.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос