Вопрос задан 04.05.2019 в 01:39. Предмет Геометрия. Спрашивает Соболев Сергей.

Диагональ куба равна 2 корень из 3. найдите объем куба

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Граненкова Екатерина.
Известно, что если ребро куба равно x, то его диагональ равна √3x. Таким образом, ребро нашего куба равно 2, а его объём равен 2³=8
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления объема куба, нам необходимо знать длину его ребра. В данном случае, нам дана диагональ куба, которая равна 2√3.

Чтобы найти длину ребра куба, мы можем воспользоваться теоремой Пифагора. В кубе все ребра равны между собой, поэтому диагональ куба является гипотенузой прямоугольного треугольника, а ребра - его катетами.

Теорема Пифагора гласит: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Мы можем записать это в виде уравнения: (длина ребра)² + (длина ребра)² = (диагональ)²

Обозначим длину ребра как "a". Тогда уравнение примет вид: a² + a² = (2√3)²

Решим это уравнение: 2a² = 4*3 2a² = 12 a² = 12/2 a² = 6 a = √6

Теперь, когда мы знаем длину ребра куба, мы можем найти его объем. Объем куба вычисляется по формуле V = a³, где "V" - объем, а "a" - длина ребра.

В данном случае, объем куба будет равен: V = (√6)³ V = 6√6

Таким образом, объем куба равен 6√6.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос