Вопрос задан 02.05.2019 в 16:44. Предмет Геометрия. Спрашивает Иванов Иван.

В треугольнике АВС известно что АВ=ВС,АВС=106.Найдите ВСА

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шнырёва Кристина.
Треугольник АВС-равнобедренный, т.к. АВ=ВС. Значит, углы при основании равны. Всего 180 градусов.
Ищем два угла при основании:
180-106=74 градуса
Теперь найдем каждый из этих углов:
74:2=37 градусов
Ответ:37
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем использовать теорему синусов.

Теорема синусов гласит: в любом треугольнике отношение длины стороны к синусу противолежащего ей угла равно постоянной величине.

В нашем случае, у нас есть две стороны треугольника АВС - АВ и ВС, и угол АВС между ними. Мы хотим найти длину стороны ВСА, которая является противолежащей углу ВСА.

Пусть сторона АВ и ВС равны х. Тогда, согласно условию, длина стороны АВС равна 106.

Применяя теорему синусов, мы можем записать:

sin(АВС) / АВ = sin(ВСА) / ВС

Подставляем известные значения:

sin(106) / х = sin(ВСА) / х

Отсюда можно сделать вывод, что sin(106) = sin(ВСА), так как длины сторон АВ и ВС равны.

Теперь нам нужно найти угол ВСА, для чего мы можем использовать обратную функцию синуса:

ВСА = arcsin(sin(106))

Вычисляем:

ВСА ≈ 106 градусов

Таким образом, угол ВСА равен примерно 106 градусов.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос