
Докажите что если прямая пересекает одну из двух параллельных прямых то она пересекает и другую


Ответы на вопрос

Действительно, пусть прямые а и b паралл. и прямая с пересекает прямую а в точке М. Докажем, что прямая с пересеккает и b. если бы прямая не пересекала прямую b, то через точку М проходили бы две прямые параллельные прямой b. но это противоречит аксиоме паралл прямых, и, значит, прямая с пересекает прямую b.



Proof that if a line intersects one of two parallel lines, then it intersects the other
To prove that if a line intersects one of two parallel lines, then it intersects the other, we can use the following reasoning:
Let's consider two parallel lines, line A and line B. We will assume that line A intersects line C, and we want to prove that line A also intersects line B.
To begin, we can draw a transversal line, line D, that intersects both line A and line B. This is possible because line A and line B are parallel, and according to the parallel postulate, any transversal line will intersect them.
Now, let's consider the angles formed by the intersection of line D with line A and line B. We will label these angles as angle 1 and angle 2, respectively.
According to the alternate interior angles theorem, if two parallel lines are intersected by a transversal line, then the alternate interior angles are congruent. In this case, angle 1 and angle 2 are congruent.
Since line A intersects line C, we can draw another transversal line, line E, that intersects both line A and line C. Again, this is possible because line A and line C are not parallel.
Now, let's consider the angles formed by the intersection of line E with line A and line C. We will label these angles as angle 3 and angle 4, respectively.
According to the corresponding angles theorem, if two parallel lines are intersected by a transversal line, then the corresponding angles are congruent. In this case, angle 3 and angle 4 are congruent.
Now, let's compare angle 1 and angle 3. Since angle 1 and angle 3 are congruent (as they are corresponding angles), and angle 1 and angle 2 are congruent (as they are alternate interior angles), we can conclude that angle 2 and angle 3 are congruent.
Since angle 2 and angle 3 are congruent, this means that line D intersects line C. Therefore, line A intersects both line B and line C.
In conclusion, if a line intersects one of two parallel lines, then it intersects the other as well.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili