Вопрос задан 01.05.2019 в 12:38. Предмет Геометрия. Спрашивает Воробьёва Виктория.

Помогите пожалуйста)) AB перпендикулярна плоскости альфа.Наклонная AC образует с плоскостью угол

60º,а наклонная AD равна √7.Длина проекции наклонной BD=2см.Вычислить длину наклонной AC. И если можно решение с рисунком)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Храмушев Дмитрий.
Вот, думаю разъяснения особо не понадобятся.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given the following information: - Line AB is perpendicular to plane alpha. - Line AC forms a 60º angle with the plane. - Line AD has a length of √7. - The length of the projection of line BD is 2 cm.

We need to find the length of line AC.

Solution

To solve this problem, we can use the properties of right triangles and trigonometry. Let's break down the solution into steps:

1. Find the length of line BD. 2. Find the length of line AB. 3. Find the length of line AD. 4. Use the lengths of AB and AD to find the length of line AC.

Step 1: Find the length of line BD

We are given that the length of the projection of line BD is 2 cm. This means that the length of line BD itself is also 2 cm.

Answer: The length of line BD is 2 cm.

Step 2: Find the length of line AB

Since line AB is perpendicular to plane alpha, it is also perpendicular to line BD. Therefore, line AB and line BD form a right triangle. We can use the Pythagorean theorem to find the length of line AB.

Let's assume the length of line AB is x. According to the Pythagorean theorem, we have:

x^2 = BD^2 - AD^2 x^2 = 2^2 - √7^2 x^2 = 4 - 7 x^2 = -3

Since we cannot have a negative length, it means that line AB does not exist.

Answer: Line AB does not exist.

Step 3: Find the length of line AD

We are given that the length of line AD is √7.

Answer: The length of line AD is √7.

Step 4: Find the length of line AC

Line AC forms a 60º angle with plane alpha. Since line AC and line AB are perpendicular, we can consider line AC as the hypotenuse of a right triangle with line AD as one of the legs.

Using trigonometry, we can find the length of line AC. The sine of the angle between line AC and line AD is equal to the length of line AD divided by the length of line AC. Therefore, we have:

sin(60º) = AD / AC √3/2 = √7 / AC

Cross-multiplying, we get:

√3 * AC = 2 * √7 AC = (2 * √7) / √3 AC = (2 * √7 * √3) / (√3 * √3) AC = (2 * √21) / 3

Answer: The length of line AC is (2 * √21) / 3.

Conclusion

- The length of line BD is 2 cm. - Line AB does not exist. - The length of line AD is √7. - The length of line AC is (2 * √21) / 3.

Please note that the solution does not require a diagram, as the problem can be solved using trigonometry and the given information.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос