
Стороны треугольника относятся как 3:4:5 Найдите наибольшую сторону подобного ему треугольника,
периметр которого равен 36 см

Ответы на вопрос

12х = 36
х = 3 ( это коэффициент пропорциональности или коэффициент подобия))
3х = 9 (см)- это одна сторона Δ
4х = 12(см) - это вторая сторона Δ
5х = 15(см) - это третья сторона Δ
Ответ 15см



Для решения этой задачи, мы можем использовать пропорцию между сторонами треугольников. Если стороны треугольника относятся как 3:4:5, то мы можем записать это как:
x:4x:5x
где x - это множитель, который мы будем умножать на каждую сторону первого треугольника, чтобы найти соответствующую сторону второго треугольника.
Периметр треугольника равен сумме длин его сторон. Для первого треугольника, сумма сторон будет:
3x + 4x + 5x = 12x
Для второго треугольника, сумма сторон также будет:
x + 4x + 5x = 10x
Мы знаем, что периметр второго треугольника равен 36 см, поэтому у нас есть уравнение:
10x = 36
Чтобы решить это уравнение, мы делим обе стороны на 10:
x = 3.6
Теперь, чтобы найти длины сторон второго треугольника, мы умножаем x на каждое отношение сторон первого треугольника:
Самая большая сторона второго треугольника будет 5x:
5 * 3.6 = 18 см
Таким образом, наибольшая сторона подобного треугольника, периметр которого равен 36 см, будет равна 18 см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili