 
Вопрос задан 13.05.2018 в 09:04.
Предмет Геометрия.
Спрашивает Галушкина Лиля.
Апофема правильной треугольной пирамиды равна 7 см. , а радиус окружности вписанной в её основание
равна 2^3 см. вычислить боковую поверхность пирамиды 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Муратова Лейла.
                
    Пирамида КАВС, К-вершина, АВС-равносторонний треугольник, О-центр основания (пересечение высот=медиан=биссектрис), АН-высота на ВС, КН-апофема (высота на ВС), ОН-радиус вписанной окружности =2*корень3 (надо думать что знаком ^ - обозначили корень, а не степень), ОН=1/3АН, АН=3*ОН=3*2*корень3=6*корень3, АС=АН/sin60=6*корень3/(корень3/2)=12, боковая поверхность=1/2*периметрАВС*КН=1/2*3*12*7=126
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			