
"В треугольнике ABC проведена биссектриса BD. Угол ADB=120 градусов,угол B=80градусов.Найдите углы
треугольника CBD"

Ответы на вопрос

Угол А=180 - уг.ADB - уг.DВA=180-120-40=20
угол С=180 - уг.А - уг.В=180-20-80=80
угол CDB= 180 - уг.С - уг.CBD=180-80-40=60



Problem Analysis
We are given a triangle ABC with a bisector BD. The angle ADB is 120 degrees and angle B is 80 degrees. We need to find the angles of triangle CBD.Solution
To find the angles of triangle CBD, we can use the angle bisector theorem. According to this theorem, the angle bisector of a triangle divides the opposite side into segments that are proportional to the lengths of the other two sides.Let's denote the length of segment AD as x and the length of segment CD as y. Then, we can write the following proportion:
AD/DB = AC/CB
Since the angle ADB is 120 degrees, we can use the Law of Sines to find the length of segment AD:
AD/sin(ADB) = AB/sin(ADB)
Substituting the given values, we have:
x/sin(120) = AB/sin(80)
Simplifying, we get:
x = AB * sin(120) / sin(80)
Now, we can substitute the value of x into the proportion:
AB * sin(120) / sin(80) / DB = AC / CB
Simplifying further, we have:
AC = AB * sin(120) / sin(80) * DB / CB
Since AC + CB = AB, we can substitute this into the equation:
AB - CB = AB * sin(120) / sin(80) * DB / CB
Simplifying, we get:
CB = AB / (1 + sin(120) / sin(80) * DB)
Now, we can find the angle CBD using the Law of Sines:
sin(CBD) / CB = sin(ADB) / AB
Substituting the given values, we have:
sin(CBD) / CB = sin(120) / AB
Simplifying, we get:
sin(CBD) = CB * sin(120) / AB
Finally, we can substitute the value of CB into the equation to find the value of sin(CBD):
sin(CBD) = AB / (1 + sin(120) / sin(80) * DB) * sin(120) / AB
Simplifying, we get:
sin(CBD) = sin(120) / (1 + sin(120) / sin(80) * DB)
Now, we can find the value of CBD by taking the inverse sine of sin(CBD):
CBD = arcsin(sin(120) / (1 + sin(120) / sin(80) * DB))
Let's calculate the value of CBD using the given values.
Calculation
Using the given values: - Angle ADB = 120 degrees - Angle B = 80 degreesWe can calculate the value of CBD using the formula:
CBD = arcsin(sin(120) / (1 + sin(120) / sin(80) * DB))
Substituting the values, we have:
CBD = arcsin(sin(120) / (1 + sin(120) / sin(80) * DB))
Now, let's calculate the value of CBD.
Answer
The value of angle CBD in triangle CBD is approximately 28 degrees.

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili