Вопрос задан 24.04.2019 в 09:11. Предмет Геометрия. Спрашивает Соколовская Резеда.

Катеты равнобедренного прямоугольного треугольника равны 82+41 корень из 2 . Найдите радиус

окружности, вписанной в этот треугольник.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Беляев Сергей.

Формула радиуса вписанной в прямоугольный треугольник окружности: r=(a+b-c)/2. В нашем случае a=b и r=a - c\2.

В равнобедренном прямоугольном треугольнике гипотенуза равна а√2. Тогда r= а - а√2/2 = а(2-√2)/2. Подставив сюда значение а=(82+41√2), получим: r=(82+41√2)*(2-√2)/2 \= (164+82√2-82√2-82)/2 = 41.

Ответ: r=41 ед.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос