
Вопрос задан 12.04.2019 в 16:54.
Предмет Геометрия.
Спрашивает Деркач Дарья.
В треугольнике ABC длины сторон 8, 12, 15. Найти биссектрису, проведённую к большейстороне.


Ответы на вопрос

Отвечает Коваленко Николай.
Биссектриса острого угла треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам треугольника.
AM - биссектриса,
Обозначим
ВМ= 8х
МС= 12х,
тогда отношение 8х:12х=8:12 равно отношению сторон.
Но 8х+12х=15
20х=15
х=15:20
х=3/4
ВМ=8х=8·(3/4)=6
МС=12х=12·(3/4)=9
По теореме косинусов из треугольника
АВС
АС²=АВ²+ВС²-2·АВ·ВС·сos( ∠ B)
12²=8²+15²-2·8·15·сos( ∠ B)
144=64+225- 240·cos( ∠ B)
cos( ∠ B) =(64+225-144)/240=145/240=29/120
Из треугольника АВМ по теореме косинусов:
АМ²=АВ²+ВМ²-2·АВ·ВМ·сos( ∠ B)
AM²=8²+6²-2·8·6·(29/120)=64+36-23,2=76,8
АМ=16√0,3
AM - биссектриса,
Обозначим
ВМ= 8х
МС= 12х,
тогда отношение 8х:12х=8:12 равно отношению сторон.
Но 8х+12х=15
20х=15
х=15:20
х=3/4
ВМ=8х=8·(3/4)=6
МС=12х=12·(3/4)=9
По теореме косинусов из треугольника
АВС
АС²=АВ²+ВС²-2·АВ·ВС·сos( ∠ B)
12²=8²+15²-2·8·15·сos( ∠ B)
144=64+225- 240·cos( ∠ B)
cos( ∠ B) =(64+225-144)/240=145/240=29/120
Из треугольника АВМ по теореме косинусов:
АМ²=АВ²+ВМ²-2·АВ·ВМ·сos( ∠ B)
AM²=8²+6²-2·8·6·(29/120)=64+36-23,2=76,8
АМ=16√0,3


Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili