
Вопрос задан 09.05.2018 в 15:22.
Предмет Геометрия.
Спрашивает Бурдужа Людочка.
Радиус сферы вписанной в правильную 4угольную пирамиду равен 2 см, а двугранные углы при ребрах
основания по 60град, вычислить площадь боковой поверхности пирамиды

Ответы на вопрос

Отвечает Орынбасарова Диана.
Осевое сечение данной пирамиды -правильный треугольник. Поскольку у него углы при основании 60, значит и при вершине 60. В плоскости осевого сечения сфера проецируется как окружность вписанная в правильный треугольник радиусом R=2. По известной формуле R=а/2корня из3. Отсюда сторона треугольника а=2*(2 корня из 3)= 4 корня из 3. В данном сечении боковая сторона треугольника равна апофеме h. Отсюда площадь боковой поверхности S бок.=1/2*p*h=1/2*4* (4корня из 3)*(4 корня из 3)= 96.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili