
Вопрос задан 10.04.2019 в 11:39.
Предмет Геометрия.
Спрашивает Луцик Христя.
Найдите площадь правильного четырехугольника со стороной 3 см и радиусы вписанной и описанной
окружности

Ответы на вопрос

Отвечает Равшанов Ахмад.
Правильный четырехугольник - это квадрат. Его площадь равна произведению сторон - 3*3=9.
Диаметр описанной окружности квадрата равен диагонали, тогда радиус равен половине диагонали. Диагональ квадрата в √2 раз больше стороны, то есть она равна 3√2, а её половина - радиус описанной окружности - 3√2/2.
Диаметр вписанной окружности равен стороне квадрата. Значит, радиус её будет равен 3/2.
Диаметр описанной окружности квадрата равен диагонали, тогда радиус равен половине диагонали. Диагональ квадрата в √2 раз больше стороны, то есть она равна 3√2, а её половина - радиус описанной окружности - 3√2/2.
Диаметр вписанной окружности равен стороне квадрата. Значит, радиус её будет равен 3/2.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili