Вопрос задан 06.04.2019 в 05:11. Предмет Геометрия. Спрашивает Курманов Павел.

Найти меньшую диагональ ромба, стороны котопого равны 8, а острый угол равен 60 градусов.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Догилев Артём.
Если провести меньшую диагональ ромба, то она разделит тупые углы ромба пополам. Тупой угол ромба равен 180-60 = 120°, половины его по 60°. У нас получилось два треугольника, углы которых равны по 60°. Они равносторонние, значит меньшая диагональ и стороны ромба равны по 8.
0 0
Отвечает Настачук Ратмир.
т.к острый угол равен 60, тупой равен 120. проводим диагональ из тупого угла, которая так же является биссектрисой этого угла. Следовательно у нас получается 2 треугольника, где все углы по 60 градусов, то есть равносторонние. А т.к. треугольник равносторонний меньшая диагональ, как и две другии стороны этого треугольника, равна 8.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос