 
Вопрос задан 21.03.2019 в 08:29.
Предмет Геометрия.
Спрашивает Нухтархан Айгерім.
В треугольнике АВС вписана окружность с центром О; А1, В1, С1 – точки касания окружности к сторонам
ВС, АС, АВ соответственно. Докажите, что АС1+СА1=АВ1+А1В 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Бажина Злата.
                
     Касательные к окружности, проведённые из одной точки вне окружности, равны. Значит АВ1=АС1, ВС1=ВА1, СА1=СВ1.
Исходя из этого легко увидеть, что доказать это тождество не возможно (возможно только в частном случае: правильный или равнобедренный треугольник).
В левой части равенства расположены касательные, принадлежащие вершинам А и С, а в правой, принадлежащие А и В.
Если АС1=АВ1, то СА1≠А1В.
Доказано, что равенство неверно.
                                        Исходя из этого легко увидеть, что доказать это тождество не возможно (возможно только в частном случае: правильный или равнобедренный треугольник).
В левой части равенства расположены касательные, принадлежащие вершинам А и С, а в правой, принадлежащие А и В.
Если АС1=АВ1, то СА1≠А1В.
Доказано, что равенство неверно.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			