Вопрос задан 20.03.2019 в 21:49. Предмет Геометрия. Спрашивает Зайцева Анна.

Из точки А, лежащей на окружности ,проведены две хорды АВ=8 см , АС=4√3. Найти углы треугольника

АВС и радиус описанный около треугольника окружностти, если расстояние между серединами данных хорд = 2см. С рисунком пожалуйста!!! Очень надо!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Колодезный Евгений.
Прямая, проведённая между серединами двух сторон треугольника, называется средней линией. Она вдвое короче третьей, параллельной ей стороны, значит ВС=2·2=4 см.
По теореме косинусов cosA=(АВ²+АС²-ВС²)/(2АВ·АС)=(64+48-16)/(2·8·4√3)=√3/2 ⇒ ∠А=30°.
cosB=(АВ²+ВС²-АС²)/(2АВ·ВС)=(64+16-48)/(2·8·4)=1/2 ⇒ ∠В=60°.
∠С=180-∠А-∠В=180-30-60=90°.
В прямоугольном тр-ке, вписанном в окружность, гипотенуза является диаметром, значит радиус окружности равен её половине: R=АВ/2=8/2=4 см. - это ответ. 
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос