
Вопрос задан 19.03.2019 в 04:32.
Предмет Геометрия.
Спрашивает Смирнов Евгений.
В кубе ABCDA1B1C1D1 отмечены точки M N и K - середины ребер AD, CD, A1B1 соответственно. Найдите
площадь сечения куба плоскостью MNK, если ребро куба равно 6.

Ответы на вопрос

Отвечает Леготина Александра.
Сечение - правильный шестиугольник со стороной =(1/2)√(6²+6²)=3√2
Sсеч=6*SΔ
S=6*((3√2)² *√3)/4
Sсеч=27√3
Sсеч=6*SΔ
S=6*((3√2)² *√3)/4
Sсеч=27√3



Отвечает Ульянова Светлана.
В сечении образуется правильный шестиугольник.
Сторона равна 3√2 как гипотенуза равнобедренного прямоугольного треугольника.
Площадь правильного шестиугольника S = (3√3a²) / 2=
= 3√3*18 / 2 = 27√3 кв.ед.
Сторона равна 3√2 как гипотенуза равнобедренного прямоугольного треугольника.
Площадь правильного шестиугольника S = (3√3a²) / 2=
= 3√3*18 / 2 = 27√3 кв.ед.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili