Вопрос задан 17.03.2019 в 17:58. Предмет Геометрия. Спрашивает Смирнов Евгений.

Высота прямоугольного треугольника, проведена к гипотенузе, делит ее на отрезки длиной 54 см и 96

см. Найдите периметр треугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кувшин Даниил.
В прямоугольном треугольнике АВС высота СН, проведенная из вершины прямого угла С, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Гипотенуза АВ делится этой высотой на отрезки так, что справедливы соотношения:
АС²=АВ*АН , ВС²=АВ*ВН и СН²=АН*ВН.
Таким образом, если АВ=54+96=150см (дано), то
АС=√(АВ*АН) = √(150*96) = 120см.
ВС=√(АВ*ВН) = √(150*54) = 90см.
Тогда периметр треугольника равен 150+120+90=360см.
Ответ: Р=360см.

Второй вариант:
СН=√(96*54)=72см.  Тогда из прямоугольных треугольников САН и СВН по Пифагору имеем:
АС=√(96²+72²)=√(9216+5184) = 120см
ВС=√(54²+72²)=√(2916+5184) = 90см.
Периметр: 150+120+90=360см.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос