Вопрос задан 04.05.2018 в 03:45. Предмет Геометрия. Спрашивает Белобородов Рома.

Угол при вершине осевого сечения конуса с высотой 1 м равен 120°. Чему равна площадь сечения

конуса, проведенного через две образующие, угол между которыми равен 60°? Всем заранее спасибо за помощь!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Юнусов Эмиль.

H(высота) конуса=100см.=1м. угол при вершине=120°. Половина осевого сечения конуса дает прямоугольный треугольник, где катет a=h=100 см., угол при вершине=60°(120°/2). Найдем гипотенузу рассматриваемого прямоугольного треугольника: с = a/cos60°=100/0,5=50см.=0,5м.
Сечение конуса из двух образующих есть треугольник, 2-е стороны которого равны и дан угол между ними=60°. Образующие конуса равны: с=с1=50 см.=0,5м. Треугольник равнобедренный. Значит углы при основании должны быть равны между собой. (В любом треугольнике сумма углов =180°) 180°- 60°=90°, 90°/2=45°
S площадь полученного сечения конуса(равнобедренного треугольника)= 1/2 * a²(у нас a²=с*с1) * sinα= 1/2 * 0,5² * sin60°=0,5 * 0,5² *0,87=0,10875м²=10,88см²

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос