
Вопрос задан 02.05.2018 в 10:36.
Предмет Геометрия.
Спрашивает Кнутова Ирина.
в правильной треугольной пирамиде боковое ребро равно 10 см и образует с плоскостью основания угол
30. Вычислите сторону основания пирамиды . решите пожалуйста

Ответы на вопрос

Отвечает Лунин Константин.
В правильной пирамиде высота проходит через центр вписанной и описанной окружности основания ,а основанием служит правильный многоугольник (в нашем случае равносторонний треугольник), значит BO=R-радиус описанной окружности
угол между наклонной и плоскостью-это угол между самой наклонной и ее проекцией на эту плоскость
Если SO-высота пирамиды ( перпендикуляр к основанию АВС), то ∠SВО-искомый угол (рис.1)
∠SВО=30°
cos30°=BO/SB
√3/2=R/10
R=5√3
R=a/√3
a=R√3=5√3*√3=5*3=15, где а-сторона основания
отв:15



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili