Вопрос задан 03.03.2019 в 19:31. Предмет Геометрия. Спрашивает Яшкина Екатерина.

Из точки отстоящей от плоскости на 10 см, проведены 2 наклонные, составляющие с плоскостью углы 30

и 45 градусов, угол между их проекциями на эту плоскость равны 30 градусам, Найти расстояние между основаниями наклонных.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сидоренко Коля.

Сделаем рисунок.
Проекция СН наклонной АС равна расстоянию от А до плоскости, т.к.АНС - равнобедренный прямоугольный треугольник.
Проекцию ВН наклонной АВ найдем из прямоугольного треугоьника АВН, где гипотенуза А вдвое больше АН, который противолежит углу 30 градусов.
На плоскости имеем треугольник со сторонами 10, 10√3, углом 30 градусов между ними и стороной, которую надлежит найти.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними:
a² = b² + c² — 2bс · cos α

сos (30°) = cos (π/6) = (√3)/2

ВС²=300+100 -200√3·(√3)/2=

ВС²=400 -300=100
ВС=√100=10 см

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос