Вопрос задан 02.03.2019 в 21:46. Предмет Геометрия. Спрашивает Калабай Акбота.

Четырёхугольник ABCD со сторонами AB=11 и CD=41 вписан в окружность. Диагонали AC и BD пересекаются

в точке K , причём ∠AKB=60∘ . Найдите радиус окружности, описанной около этого четырёхугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ломянский Егор.
Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг.
Значит градусная мера дуги АВ плюс градусная мера дуги СD равна 120°.
Следовательно, сумма центральных углов <AОВ+<CОD=120°, а 0,5<AOB+0,5<COD=60°.
Пусть <AOB=α, a <COD=β тогда α/2+β/2=60°.
Длина хорды равна L=2R*Sin(α/2), где α - центральный угол, опирающийся на дугу, стягиваемую хордой.
В нашем случае:
11=2R*Sin(α/2) и 41=2R*Sin(β/2). Разделим первое уравнение на второе.
11/41=Sin(α/2)/Sin(β/2). Но β/2=60°-α/2. Тогда
11/41=Sin(α/2)/Sin(60-α/2) (1).
Пусть теперь α/2=γ (для простоты написания).
Далее сплошная тригонометрия.  
По формуле приведения: Sin(60°-γ)=Sin60°*Cosγ-Cos60°*Sinγ или
Sin(60°-γ)=(√3/2)*Cosγ-(1/2)*Sinγ. Подставим это значение в уравнение (1):
11/41=Sin(γ)/[(√3/2)*Cosγ-(1/2)*Sinγ] или
(11√3/2)*Cosγ-(11/2)*Sin(γ)=41Sin(γ) или (11√3)*Cosγ=93Sin(γ) (2).
Мы знаем, что Cos²γ+Sin²(γ)=1.
Тогда, возведя уравнение (2) в квадрат, получим:
363*(1-Sin²(γ))=8649*Sin²(γ). Отсюда Sin²(γ)=363/9012≈0,04, а Sin(γ)=0,2.
Помня, что мы приняли α/2=γ, имеем: 11=2R*Sin(γ) или R=11/2*0,2=27,5.
Ответ: R=27,5.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос