Вопрос задан 01.05.2018 в 12:30. Предмет Геометрия. Спрашивает Чистова Юлия.

В равнобедренном треугольнике длина сонования равна 6, а диаметр вписанной окружности равен 2.

Найдите радиус описанной около данного трегольника окружность( с рисунком, если можно).
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рысбай Аділет.

Формула радиуса вписанной в равнобедренный треугольник окружности:
r = (b/2)*√(2a-b)/(2a+b), где a - боковая сторона, b - основание. Подставим известные величины и получим для r² = (b²/4)*(2a-b)/(2a+b) или 4 = 9* (2a-6)/(2a+6) или 4= 9*(a-3)/(a+3). Отсюда а = 7,8.
Формула радиуса описанной вокруг равнобедренного треугольника окружности:
R= a²/√(4a²-b²). Подставив известные значения, имеем: R= a²/√(4a²-b²) = 60,84/√(4*60,84-36) = 4,225см















0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос