
Помогите!!!!!!! Пожалуйста!!!!!!Вершины треугольника делят описанную около него окружность на три
дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.Если можно то с подробным обьяснением.

Ответы на вопрос

Пусть коэффициент отношения дуг равен k
Тогда градусная мера окружности содержит
3k+4k+11k=18k градусов
18k=360°
k=20°
Соединим центр окружности с вершинами треугольника АВС
∠ АОВ=3k=3*20°=60°,
∠ ВОС=4k=4*20°=80°
∠ АОС=11k=11*20°=220°
Углы треугольника АВС - вписанные и равны половине соответственного каждому центрального угла.
Меньшая сторона треугольника лежит против меньшего угла.
Меньший угол треугольника равен половине меньшего центрального угла: АОВ:2=60:2=30°.
Треугольник АОВ равнобедренный ( АО=ВО - радиусы), но и равносторонний, т.к. углы при АВ равны (180-60):2=60°
Следовательно, радиус окружности равен АО=ВО=АВ=14



Для решения данной задачи мы будем использовать свойство окружности, согласно которому дуги окружности, образованные центральным углом, имеют пропорциональные длины, причем эти длины относятся к длине окружности, как меры центральных углов, образованных этими дугами.
Пусть радиус окружности равен R, а меньшая сторона треугольника равна 14. Поскольку у нас есть пропорция, в которой длины дуг относятся как 3:4:11, мы можем записать следующее:
3x + 4x + 11x = 2πR,
где x - это некоторый коэффициент, который мы должны найти.
Поскольку у нас есть отношение между длинами дуг и длиной окружности, мы можем сократить обе части уравнения на 2πR: 3x + 4x + 11x = 2πR, 18x = 2πR, 9x = πR.
Таким образом, мы можем выразить R через x:
R = (9x) / π.
Мы знаем, что меньшая сторона треугольника равна 14:
2Rsin(α/2) = 14,
где α - это меры центрального угла на основе этой дуги. Мы можем выразить sin(α/2) через R:
sin(α/2) = 14 / (2R).
Теперь мы можем подставить это выражение для sin(α/2) в наше уравнение:
2R * (14 / (2R)) = 14, 14 = 14.
Как видите, это верное утверждение, что доказывает, что наша оценка для R верна.
Таким образом, радиус окружности равен R = (9x) / π. Мы можем найти коэффициент x, используя пропорцию длин дуг: 3x + 4x + 11x = 2πR, 18x = 2πR, 9x = πR.
Подставим известное значение меньшей стороны треугольника в уравнение: 14 = (9x) / π.
Теперь мы можем выразить x: 9x = 14π, x = 14π / 9.
Таким образом, радиус окружности будет: R = (9x) / π, R = (9 * (14π / 9)) / π, R = 14.
Итак, радиус окружности равен 14.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili