Вопрос задан 24.02.2019 в 11:07. Предмет Геометрия. Спрашивает Симонов Марк.

Найдите площадь равностороннего треугольника, сторона которого равна 12 см . ( желательно фото

решения)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мамайкин Кирилл.
Дано: треугольник ABC - равносторонний, AB=BC=AC=12 см
Найти: S(ABC)
Решение
Проведём из вершины B высоту BD. Если AB=BC, то мы можем сказать, что треугольник ABC - равнобедренный. Значит, BD - высота, медиана и биссектриса.
Рассмотрим прямоугольный треугольник BDC. В нём BC = 12 см по условию и DC = 6 см, т.к. BD - медиана. По теореме Пифагора найдём сторону BD:
BD = √(12² - 6²) = √(144 - 36) = √108 = √(9*2) = 3√12 = 3√(3*4) = 6√3 см
Площадь треугольника - полупроизведение стороны на высоту, проведённую к ней. Найдём площадь треугольника ABC:
S = (AC * BD)/2 = (12 * 6√3)/2 = 72√3 / 2 = 36√3 см²
Ответ: 36√3 см²
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

https://www.bing.com/images/create?q=%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8%20%D0%BE%20%D0%BF%D0%BB%D0%BE%D1%89%D0%B0%D0%B4%D0%B8%20%D1%80%D0%B0%D0%B2%D0%BD%D0%BE%D1%81%D1%82%D0%BE%D1%80%D0%BE%D0%BD%D0%BD%D0%B5%D0%B3%D0%BE%20%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0%20%D1%81%D0%BE%20%D1%81%D1%82%D0%BE%D1%80%D0%BE%D0%BD%D0%BE%D0%B9%2012%20%D1%81%D0%BC

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос