Вопрос задан 22.02.2019 в 20:37. Предмет Геометрия. Спрашивает Гуменников Матвей.

В прямоугольном треугольнике медиана и высота проведен из вершины прямого угла; они равны 25 см и

24 см. Каков периметр?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецова Арина.
Медиана равна половине гипотенузы. поэтому гипотенуза 50 см. найдём маленький катет из образовавшегося прям. треугольника по теореме Пифагора. х=√25^2 - 24^2 равен 7. теперь возьмём треугольник по другую сторону от высоты. там катет равен 25-7=18. гипотенуза √18^2 + 24^2 равна 30. и другой треугольник против высоты по другую сторону. один катет 25+7=32. другой 24. гипотенуза √24^2 + 32^2 равна 40. периметр равен 40+50+30= 120
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи о прямоугольном треугольнике, где медиана и высота проведены из вершины прямого угла, мы можем использовать теорему Пифагора и свойства медианы и высоты.

Давайте обозначим стороны прямоугольного треугольника как a, b и c, где c - гипотенуза. Также пусть m - медиана, h - высота. В данной задаче нам дано, что медиана m = 25 см, а высота h = 24 см.

Свойства медианы:

Медиана в прямоугольном треугольнике делит гипотенузу на две равные части. Таким образом, мы можем сказать, что медиана m равна половине гипотенузы c.

m = c/2

Свойства высоты:

Высота, опущенная из вершины прямого угла, разделяет прямоугольный треугольник на два подобных треугольника. Таким образом, мы можем использовать свойства подобных треугольников для решения этой задачи.

По свойствам подобных треугольников, отношение высоты к гипотенузе равно отношению другой стороны треугольника к гипотенузе.

h/c = a/c

h = a

Решение:

Теперь, используя информацию о медиане и высоте, мы можем составить систему уравнений и решить ее.

m = c/2 h = a

Так как m = 25 см и h = 24 см, мы можем записать уравнения:

25 = c/2 24 = a

Умножив оба уравнения на 2, мы получим:

50 = c 24 = a

Теперь, используя теорему Пифагора, мы можем выразить гипотенузу c:

a^2 + b^2 = c^2

Подставив значения a = 24 и c = 50, мы можем решить это уравнение:

24^2 + b^2 = 50^2 576 + b^2 = 2500 b^2 = 1924 b = √1924 ≈ 43.88

Теперь, когда у нас есть значения всех сторон треугольника, мы можем найти периметр.

Периметр треугольника равен сумме длин его сторон:

Периметр = a + b + c Периметр = 24 + 43.88 + 50 Периметр ≈ 117.88 см

Таким образом, периметр этого треугольника составляет около 117.88 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос