
Вычислите sin45+cos135-tg120


Ответы на вопрос

tg120=√3/2:1/2=√3



I can help you with math problems. Here is the solution to your question:
To find the value of $$sin45 \cdot cos135 - tg120$$, we need to use the following trigonometric identities:
$$sin(a+b) = sin(a) \cdot cos(b) + cos(a) \cdot sin(b)$$ $$cos(a+b) = cos(a) \cdot cos(b) - sin(a) \cdot sin(b)$$ $$tg(a+b) = \frac{tg(a) + tg(b)}{1 - tg(a) \cdot tg(b)}$$
Using these identities, we can rewrite the given expression as follows:
$$sin45 \cdot cos135 - tg120 = sin(45) \cdot cos(90 + 45) - tg(90 + 30)$$ $$= sin(45) \cdot (cos(90) \cdot cos(45) - sin(90) \cdot sin(45)) - \frac{tg(90) + tg(30)}{1 - tg(90) \cdot tg(30)}$$
Next, we need to use the values of the trigonometric functions at some common angles. These values can be found in a trigonometric table or derived from the unit circle. Here are the values that we need:
$$sin(45) = cos(45) = \frac{\sqrt{2}}{2}$$ $$sin(90) = 1$$ $$cos(90) = 0$$ $$tg(90) = \text{undefined}$$ $$tg(30) = \frac{\sqrt{3}}{3}$$
Substituting these values into the expression, we get:
$$sin45 \cdot cos135 - tg120 = \frac{\sqrt{2}}{2} \cdot (0 \cdot \frac{\sqrt{2}}{2} - 1 \cdot \frac{\sqrt{2}}{2}) - \frac{\text{undefined} + \frac{\sqrt{3}}{3}}{1 - \text{undefined} \cdot \frac{\sqrt{3}}{3}}$$ $$= -\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\text{undefined} + \frac{\sqrt{3}}{3}}{1 - \text{undefined} \cdot \frac{\sqrt{3}}{3}}$$ $$= -\frac{1}{2} - \frac{\text{undefined} + \frac{\sqrt{3}}{3}}{1 - \text{undefined} \cdot \frac{\sqrt{3}}{3}}$$
The last term in the expression is undefined, because it involves dividing by zero. Therefore, the final answer is also undefined. We can write this as:
$$sin45 \cdot cos135 - tg120 = \text{undefined}$$
This means that there is no real number that satisfies the given expression.
I hope this helps you understand the problem. If you need more help with math, you can visit [Mathway](https://www.mathway.com/trigonometry), a free online math solver. You can also find more trigonometric identities and formulas at [Socratic](https://socratic.org/questions/how-do-you-write-the-trigonometric-form-into-a-complex-number-in-standard-form-4).


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili